InterviewSolution
Saved Bookmarks
| 1. |
Evaluate `int(3x)/((1+2x^(4)))dx`. |
|
Answer» Putting `x^(2)=t " and "2xdx=dt`, we get `int(3x)/((1+2x^(4)))dx=(3)/(2)*int(dt)/((1+2t^(2)))` `=(3)/(4)*int(dt)/(((1)/(2)+t^(2)))=(3)/(4)*int(dt)/({((1)/(sqrt(2)))^(2)+t^(2)})` `=(3)/(4)*(1)/((1//sqrt(2)))"tan"^(-1)(t)/((1//sqrt(2))^(2))+C` `=(3)/(2sqrt(2))tan^(-1)(sqrt(2)t)+C=(3)/(2sqrt(2))tan^(-1)(sqrt(2x)^(2))+C`. |
|