1.

Evaluate `int(3x)/((1+2x^(4)))dx`.

Answer» Putting `x^(2)=t " and "2xdx=dt`, we get
`int(3x)/((1+2x^(4)))dx=(3)/(2)*int(dt)/((1+2t^(2)))`
`=(3)/(4)*int(dt)/(((1)/(2)+t^(2)))=(3)/(4)*int(dt)/({((1)/(sqrt(2)))^(2)+t^(2)})`
`=(3)/(4)*(1)/((1//sqrt(2)))"tan"^(-1)(t)/((1//sqrt(2))^(2))+C`
`=(3)/(2sqrt(2))tan^(-1)(sqrt(2)t)+C=(3)/(2sqrt(2))tan^(-1)(sqrt(2x)^(2))+C`.


Discussion

No Comment Found