1.

Evaluate: `int(5x-2)/(1+2x+3x^2)dx`

Answer» Let `(5x-2)=A*(d)/(dx)(1+2x+3x^(2))+B`.
Then , `(5x-2)=A(6x+2)+B`. " " ...(i)
Comparing the coefficients of like powers of x on both sides , we get `6A=5and2A+B=-2`
This gives `A=(5)/(6)andB=(-11)/(3)`.
`thereforeI=int({(5)/(6)(6x+2)-(11)/(3)})/((1+2x+3x^(2)))dx`
`=(5)/(6)*int(6x+2)/((1+2x+3x^(2)))dx-(11)/(3)int(dx)/((3x^(2)+2x+1))`
`=(5)/(6)log|1+2x+3x^(2)|-(11)/(9)*int(dx)/({(x+(1)/(3))^(2)+((1)/(3)-(1)/(9))})`
`=(5)/(6)log|1+2x+3x^(2)|-(11)/(9)*int(dx)/({(x+(1)/(3))^(2)+((sqrt(2))/(3))^(2)})+C`
`=(5)/(6)log|1+2x+3x^(2)|-(11)/(9)*(1)/(((sqrt(2))/(3)))tan^(-1){(x+(1)/(3))/(((sqrt(2))/(3)))}+C`
`=(5)/(6)log|1+2x+3x^(2)|-(11)/(3sqrt(2))tan^(-1)((3x+1)/(sqrt(2)))+C`.


Discussion

No Comment Found