1.

Evaluate `int(dx)/((2+cosx))`.

Answer» We have `int(dx)/((2+cosx))=int(dx)/(1+(1+cosx))=int(dx)/(1+2cos^(2)(x//2))=int(sec^(2)(x//2)dx)/(sec^(2)(x//2)+2)`
[ dividing the num . And denom . By `cos^(2)(x//2)`]
`=int(sec^(2)(x//2))/(3+tan^(2)(x//2))dx=2int(dt)/(3+t^(2))`, where tan `(x//2)=`
`=2*int(dt)/((sqrt(3))^(2)+t^(2))=2*(1)/(sqrt(3))"tan"^(-1)(t)/(sqrt(3))+C`
`=(2)/(sqrt(3))tan^(-1)[(tan(x//2))/(sqrt(3))]+C`.


Discussion

No Comment Found