InterviewSolution
Saved Bookmarks
| 1. |
Evaluate : `int(dx)/(sqrt(1-sinx))` |
|
Answer» `int(dx)/(sqrt(1-sinx))=(dx)/([sin^(2)(x//2)+cos^(2)(x//2)-2"sin"(x)/(2)"cos"(x)/(2)]^(1//2))` `=int(dx)/(("sin"(x)/(2)-"cos"(x)/(2)))=(1)/(sqrt(2))int(dx)/(((1)/(sqrt(2))*"sin"(x)/(2)-"cos"(x)/(2)*(1)/(sqrt(2))))` `=(1)/(sqrt(2))*int(dx)/(("sin"(x)/(2)"cos"(pi)/(4)-"cos"(x)/(2)"sin"(pi)/(4)))` `=(1)/(sqrt(2))int"cosec"((pi)/(2)-(pi)/(4))dx=(1)/(sqrt(2))2*log[tan((x)/(4)-(pi)/(8))]+C` `=sqrt(2)logtan((x)/(4)-(pi)/(8))+C`. |
|