1.

Evaluate : `int(dx)/(sqrt(1-sinx))`

Answer» `int(dx)/(sqrt(1-sinx))=(dx)/([sin^(2)(x//2)+cos^(2)(x//2)-2"sin"(x)/(2)"cos"(x)/(2)]^(1//2))`
`=int(dx)/(("sin"(x)/(2)-"cos"(x)/(2)))=(1)/(sqrt(2))int(dx)/(((1)/(sqrt(2))*"sin"(x)/(2)-"cos"(x)/(2)*(1)/(sqrt(2))))`
`=(1)/(sqrt(2))*int(dx)/(("sin"(x)/(2)"cos"(pi)/(4)-"cos"(x)/(2)"sin"(pi)/(4)))`
`=(1)/(sqrt(2))int"cosec"((pi)/(2)-(pi)/(4))dx=(1)/(sqrt(2))2*log[tan((x)/(4)-(pi)/(8))]+C`
`=sqrt(2)logtan((x)/(4)-(pi)/(8))+C`.


Discussion

No Comment Found