1.

Evaluate `int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))`

Answer» `I= int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))`
`= int_(pi/6)^(pi/3) dx/(1 + sqrt(sinx/cosx))`
`I= int _(pi/6)^(pi/3) (sqrt(cosx))/(sqrtcosx + sqrtsinx) dx`
`int_a^b f(x) = int_a^b f(a+b-x) dx`
`I= int_(pi/6) ^ (pi/3) ( sqrt (cos(pi/3 + pi/6 -x))/(sqrt(cos(pi/3 + pi/6 - x)) + sqrt(sin(pi/3 + pi/6 - x))))dx`
`I = int _(pi/6) ^(pi/3) (sqrt sinx)/(sqrt sinx + sqrt cosx ) dx`
`2I= int_(pi/6)^(pi/3) ( sqrt cosx + sqrt sinx)/(sqrt sinx + sqrt cosx) dx`
`2I= int _(pi/6)^(pi/3) 1.dx`
`2I= pi/3 - pi/6= pi/6`
`I= pi/12`
Answer


Discussion

No Comment Found