1.

Evaluate : `int(tan^(-1)x)/((1+x)^(2))dx`.

Answer» Integrating by parts, taking `tan^(-1)`x as the first function and `(1)/((1+x)^(2))` as the second function, we get
`I=tan^(-1)x*((-1))/((1+x))-int(1)/((1+x^(2)))*((-1))/((1+x))dx`
`(-tan^(-1)x)/((1+x))+int(dx)/((1+x)(1+x^(2)))=(-tan^(-1)x)/((1+x))+(1)/(2)*int{(1)/((1-x))+((1-x))/((1+x^(2)))}" [by partial fractions]"`
`=(-tan^(-1))/((1+x))+(1)/(2)log|a+x|+(1)/(2)tan^(-1)x-(1)/(4)log(1+x^(2))+C`.


Discussion

No Comment Found