1.

Evaluate:`int(x^2+1)/(x^4+x^2+1)dx`

Answer» We have `int((x^(2)-1))/((x^(4)+x^(2)+1))dx=int((1-(1)/(x^(2))))/((x^(2)+(1)/(x^(2))+1))dx`
[ diving num . And denom . By `x^(2)` ]
`=int((1-(1)/(x^(2))))/([(x+(1)/(x))^(2)-1])dx=int(dt)/((t^(2)-1))`
`["Putting"(x+(1)/(x))=t and(1-(1)/(x^(2))dx=dt]`
`=(1)/(2)log|(t-1)/(t+1)|+C=(1)/(2)log|(x+(1)/(x)-1)/(x+(1)/(x)+1)|+C`
`=(1)/(2)log|(x^(2)-x+1)/(x^(2)+x+1)|+C`.


Discussion

No Comment Found