1.

Evaluate: `intcosx sqrt(4-sin^2x) dx`

Answer» Putting sin x = t and cos x dx = dt , we get
`I=intsqrt(4-t^(2))dt`
`=(t)/(2)sqrt(4-t^(2))+(4)/(2)"sin"^(-1)(t)/(2)+C`
`=(1)/(2)sinxsqrt(4-sin^(2)x)+2sin^(-1)((1)/(2)sinx)+C`.
Integrals of the form `intsqrt((ax^(2)+bx+c))dx`
Method Express `(ax^(2)+bx+c)" as a"[(x+alpha)^(2)+-beta^(2)]` and obtain an integral which can be evaluated easily.


Discussion

No Comment Found