1.

Evaluate `intxsqrt(x^(4)+1)dx`.

Answer» Putting `x^(2)=t and x dx =(1)/(2)dt` we get
`I=(1)/(2)intsqrt(t^(2)+1)dt`
`=(1)/(2)*[(t)/(2)sqrt(t^(2)+1)+(1)/(2)log|t+sqrt(t^(2)+1)|]+C`
`=(x^(2))/(4)sqrt(x^(4)+1)+(1)/(4)log|x^(2)+sqrt(x^(4)+1)|+C`.


Discussion

No Comment Found