

InterviewSolution
Saved Bookmarks
1. |
Evaluate the following determinant :\(\begin{vmatrix} 67& 19& 21 \\[0.3em] 39& 13 &14 \\[0.3em] 81 &24 & 26 \end{vmatrix}\) |
Answer» Let Δ = \(\begin{vmatrix} 67& 19& 21 \\[0.3em] 39& 13 &14 \\[0.3em] 81 &24 & 26 \end{vmatrix}\) Applying, C1 → C1 – 4 C3, we get, ⇒ Δ = \(\begin{vmatrix} 4& 19& 21 \\[0.3em] -3& 13 &14 \\[0.3em] -3&24 & 26 \end{vmatrix}\) Applying, R1 → R1 + R2 and R3→ R3 – R2, we get ⇒ Δ = \(\begin{vmatrix} 1& 32& 35 \\[0.3em] -3& 13 &14 \\[0.3em] 0&11 & 12 \end{vmatrix}\) Now, applying R2 → R2 + 3R1, we get, ⇒ Δ = \(\begin{vmatrix} 1& 32& 35 \\[0.3em] 0& 109 &119 \\[0.3em] 0&11 & 12 \end{vmatrix}\) = 1[(109)(12) – (119)(11)] = 1308 – 1309 = – 1 So, Δ = – 1 |
|