1.

Evaluate the following determinant :\(\begin{vmatrix} 67& 19& 21 \\[0.3em] 39& 13 &14 \\[0.3em] 81 &24 & 26 \end{vmatrix}\)

Answer»

Let Δ =  \(\begin{vmatrix} 67& 19& 21 \\[0.3em] 39& 13 &14 \\[0.3em] 81 &24 & 26 \end{vmatrix}\)

Applying, C1 → C1 – 4 C3, we get,

⇒ Δ =  \(\begin{vmatrix} 4& 19& 21 \\[0.3em] -3& 13 &14 \\[0.3em] -3&24 & 26 \end{vmatrix}\) 

Applying, R1 → R1 + R2 and R3→ R3 – R2, we get

⇒ Δ =  \(\begin{vmatrix} 1& 32& 35 \\[0.3em] -3& 13 &14 \\[0.3em] 0&11 & 12 \end{vmatrix}\) 

Now, applying R2 → R2 + 3R1, we get,

⇒ Δ =  \(\begin{vmatrix} 1& 32& 35 \\[0.3em] 0& 109 &119 \\[0.3em] 0&11 & 12 \end{vmatrix}\) 

= 1[(109)(12) – (119)(11)] 

= 1308 – 1309

= – 1 

So, 

Δ = – 1



Discussion

No Comment Found