InterviewSolution
| 1. |
Expand (a + b)4 – (a – b)4. Using this find the value of (√3 + √2)4 – (√3 – √2)4 |
|
Answer» By using binomial theorem, (a + b)4 = 4C0 a4 b0 + 4C1 a3 b1 = 4C0 a4 + 4C1 a3 b1 + 4C2 a2 b2 and (a – b)4 = 4C0 a4 (-b)0+ 4C1 a3 (-b)1 = 4C0 a4 – 4C1 a3 b + 4C2 a2 b2 From equation (1) and (2) we have, (a + b)4 – (a – b)4 = [4C0 a4 + 4C1 a3 b +4C2 a2 b2 + 4C3 ab3 + 4C4 b4] = 4C0 a4 + 4C1 a3 b + 4C2 a2 b2 + 4C3 ab3 + 4C4 b4 = 2. 4C1 a3 b + 2. 4C3 ab3 = 2ab [4C1 a2 + 4C3 b2] = 2ab [4a2 + 4b2] [∴ 4C1 = 4, 4C3 = 4] = 2ab (a2 + b2) Hence, (a + b)4 – (a – b)4 = 8ab (a2 + b2) Now, putting a= √3 and b = √2 (√3 + √2)4 – (√3 – √2)4 = 8 √3 × √2 [(√3)2 + (√2)2] = 8 √6 (3 + 2) = 8 √6 × 5 – 40 √6 Hence (√3 + √2 )4 – (√3 – √2 )4 = 40 √6 |
|