1.

Express the trignometric ratio sinA , secA, and tanA in terms of cotA

Answer» 1.TanA=1/cotA2. sinA÷cosA=TanA SinA×1/cosA=1/cotA SinA×1/sin(90-A)=1/cotA SinA/sin(90-A)=1/cotA3. secA=1/cosA SecA=1/cotA×sinA [cosA/sinA=cotA] SecA×sinA=1/cotA Sec×cos(90-A)=1/cotA SecA×1/sec(90-A)=1/cotA SecA/sec(90-A)=1/cotA
[ i ] sinA in terms of cotA :sinA = 1 / cosecA We know that: cosec²A = 1 + cot²AsinA = 1 / √1 + cot²A[ ii ] secA in terms of cotA :We know that: 1 + tan²A = sec²AsecA = 1 + tan²AsecA = 1 + 1 / cot²AsecA = √(cot²A + 1 ) /cotA[ iii ] tanA in terms of cotA :tanA = 1 / cotAI hope it will help you?


Discussion

No Comment Found