1.

find all the common zeroes of the polynomial x3+8x2+15x and x3+5x2-9x-45

Answer» {tex}x^3+8x^2+15x{/tex}To find zero equate it with zero{tex}=> x^3+8x^2+15x= 0{/tex}{tex}=>x[ x^2+8x+15]= 0{/tex}{tex}=>x[ x^2+5x+3x+15]= 0{/tex}{tex}=>x[ x(x+5)+3(x+5)]= 0{/tex}{tex}=>x(x+5)(x+3)= 0{/tex}=> x = 0, -5,-3Similarly,\xa0{tex}x^3+5x^2-9x-45= 0{/tex}{tex}=> x^2(x+5)-9(x+5)= 0{/tex}{tex} =>( x^2-9)(x+5)= 0{/tex}{tex} =>( x+3)(x-3)(x+5)= 0{/tex}x = -3,-5,3Common zeroes are -3 and -5


Discussion

No Comment Found