1.

Find derivative of `cos(logx+e^x)`, `x >0`w.r.t. to `x`

Answer» `"Let" y = "cos" ("log" x +e^(x))`
`rArr (dy)/(dx) =(d)/(dx)"cos" ("log" x + e^(x))`
`=-"sin"("log" x + e^(x))(d)/(dx)("log" x +e^(x))`
`=-"sin"("log" x +e^(x))((1)/(x)+e^(x))`
`=(-"sin" ("log" x + e^(x))(1 + x * e^(x)))/(x)`


Discussion

No Comment Found