

InterviewSolution
Saved Bookmarks
1. |
Find derivative of `sin(tan^(-1)e^(-x))`w.r.t. to `x` |
Answer» Let y =` sin (tan ^(-1) e^(-x))` `rArr (dy)/(dx) sin (tan^(-1) e ^(-x))` ` = cos ( tan ^(-1)e^(-x)) (d)/(dx) (tan^(-1)e^(-x))` `= cos (tan ^(-1)e^(-x)). (1)/(1+ (e^(-x))^(2))(d)/(dx) e^(-x)` `= cos (tan ^(-1)e^(-x))/(1 + e^(-2x)).e ^(-x). (d)/(dx) (-x)` `=-(e ^(x).cos (tan^(1) e^(x)))/(1+e^-2x) ` |
|