1.

Find the 0s of the polynomial 5√5x^2+30x+8√5

Answer» {tex}5{/tex}{tex}\\sqrt{5}{/tex}{tex}x^2\xa0+ 30x + 8{/tex}{tex}\\sqrt{5}{/tex}\xa0{tex}= 5{/tex}{tex}\\sqrt{5}{/tex}{tex}x^2\xa0+ 20x + 10x + 8{/tex}{tex}\\sqrt{5}{/tex}= {tex}5x ({/tex}{tex}\\sqrt{5} x{/tex}\xa0{tex}+ 4) + 2{/tex}\xa0{tex}\\sqrt{5}{/tex}{tex}\xa0({/tex}{tex}\\sqrt{5}{/tex}{tex}x + 4){/tex}= ({tex}\\sqrt{5} x{/tex}\xa0+ 4)(5x + 2{tex}\\sqrt{5}{/tex})=\xa0{tex}\\sqrt{5}{/tex}\xa0({tex}\\sqrt{5}{/tex}x + 2)({tex}\\sqrt{5}{/tex}x + 4)


Discussion

No Comment Found