1.

Find the derivative of `(1+cosx)^(x)` with respect to x.

Answer» Let y=`(1+cosx)^(x)`
log y=`log(1+cosx)^(x)`
`=xlog(1+cosx)`
Differentiate both sides with respect to x.
`(1/y)(dy)/(dx)=xcdotd/(dx)log(1+cosx)+log(1+cosx)cdotd/(dx)x`
`rArr(dy)/(dx)=y[x/(1+cosx)cdotd/(dx)(1+cosx)+log(1+cosx)]`
`rArr(dy)/(dx)=(1+cosx)^(x)[(-xsinx)/(1+cosx)+log(1+cosx)]`
Ans.


Discussion

No Comment Found