InterviewSolution
Saved Bookmarks
| 1. |
Find the derivative of \(\sqrt{4-x}\) from first principle. |
|
Answer» Let, \(f(x)=\sqrt{4-x}\) ∴ \(f'(x)=\lim\limits_{h \to 0}\frac{f(x+h)-f(x)}{h}\) \(=\lim\limits_{h \to 0}\frac{\sqrt{4-(x+h)}-\sqrt{4-x}}{h}\) \(=\lim\limits_{h \to 0}\frac{[\sqrt{4-(x+h)}-\sqrt{4-x}][\sqrt{4-(x+h)}+\sqrt{4-x}]}{[h\sqrt{4-(x+h)}+\sqrt{4-x}]}\) \(=\lim\limits_{h \to 0}\frac{[{4-(x+h)}]-(4-x)}{h[\sqrt{4-(x+h)}+\sqrt{4-x}]}\) \(=\lim\limits_{h \to 0}\frac{-h}{h\sqrt{4-(x+h)}+\sqrt{4-x}}\) \(=\lim\limits_{h \to 0}\frac{1}{\sqrt{4-(x+h)}+\sqrt{4-x}}\) = \(-\frac{1}{2\sqrt{4-x}}\) |
|