InterviewSolution
Saved Bookmarks
| 1. |
For the curve f(x) = (x2 + 6x − 5)(1 − x), find the slope of the tangent at x = 3. |
|
Answer» Given, f(x) = (x2 + 6x − 5)(1 − x) = x2 + 6x − 5−x3 − 6x2 + 5x = -x3 + 5x2 +11x - 5 \(∴ f'(x)=\frac{d}{dx}(-x^3-5x^2+11x+5)\) = −3x2 − 5.2x + 11.1 − 0 = −3x2 − 10x + 11 ∴ At x = 3, f'(x) = 3.32 − 10.3 + 11 = −27 − 30 + 11 = −57 + 11 = −46 ∴ Slope of the tangent to f(x) at x = 3 is – 46. |
|