1.

For the curve f(x) = (x2 + 6x − 5)(1 − x), find the slope of the tangent at x = 3.

Answer»

Given, 

f(x) = (x2 + 6x − 5)(1 − x)

= x2 + 6x − 5−x3 − 6x2 + 5x

= -x3 + 5x2 +11x - 5

\(∴ f'(x)=\frac{d}{dx}(-x^3-5x^2+11x+5)\) 

= −3x2 − 5.2x + 11.1 − 0

= −3x2 − 10x + 11

∴ At x = 3,

f'(x) = 3.32 − 10.3 + 11

= −27 − 30 + 11

= −57 + 11

= −46

∴ Slope of the tangent to f(x) at x = 3 is – 46.



Discussion

No Comment Found