1.

If `d/(dx)((1+x^2+x^4)/(1+x+x^2))=a x+b ,`then the value of a and b are respectively.2 and 1 (b)`2a n d-1`(d) None of theseA. `-1`B. 1C. 2D. 4

Answer» Correct Answer - A
Given `(d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))`
`=(d)/(dx)[(1+x+x^(2)+x^(4)-x)/(1+x+x^(2))]`
`=(d)/(dx)[1+(x^(4)-x)/(x^(2)+x+1)]`
`=(d)/(dx)[1+(x(x^(3)-1))/(x^(2)+x+1)]`
`=(d)/(dx)[1+x(x-1)]`
`=(d)/(dx)[1+x^(2)-x]-2x - 1" "...(i)`
Now comparing equation (i) with AX + B, we get A = 2 and B = -1.


Discussion

No Comment Found