InterviewSolution
| 1. |
Find the derivative of the following function:\(f(x)=\frac{sin\,x+cos\,x}{sin\,x-cos\,x}\) |
|
Answer» Let, \(f(x)=\frac{sin\,x+cos\,x}{sin\,x-cos\,x}\) \((sin\,x-cos\,x)\frac{d}{dx}(sin\,x+cos\,x)-(sin\,x+cos\,x)\) \(∴f'(x)=\frac{(sin\,x-cos\,x)\frac{d}{dx}(sin\,x+cos\,x)-(sin\,x+cos\,x)\frac{d}{dx}(sin\,x-cos\,x)}{(sin\,x-cos\,x)^2}\) \(=\frac{-(sin\,x-cos\,x)(cos\,x-sin\,x)-(sin\,x+cos\,x)(sin\,x+cos\,x)}{(sin\,x-cos\,x)^2}\) \(=\frac{-sin^2\,x+2sin\,x\,cos\,x\,-cos^2\,x\,-sin^2\,x-2\,sin\,x\,cos\,x-cos^2\,x}{(sin\,x\,-cos\,x)^2}\)\(=\frac{-2\,(sin^x+cos^2x)}{(sin\,x-cos^\,x)^2}\) \(=\frac{-2}{(sin\,x-cos^\,x)^2}\)
=>\(f(x)=-{(1+tanx)\over(1-tanx)}\) => \(f(x)=-{tan(pi/4+x)}\) =>\(f'(x)=-{sec^2(pi/4+x)}\) |
|