InterviewSolution
Saved Bookmarks
| 1. |
Find the derivative of `x^x-2^(sinx)`w.r.t. `x` |
|
Answer» `"Let" y = x^(x) - 2^("sin"x)` `"Let " u=x^(x) and v=2^("sin"x)` `therefore y=u-v rArr (dy)/(dx)= (du)/(dx)-(dv)/(dx) " "....(1)` `"Now", u=x^(x)` `rArr "log " u = "log " (x^(x)) = x" log " x` Differentiate both sides w.r.t.x `(1)/(u) (du)/(dx) = x*(d)/(dx)"log"x + "log" x * (d)/(dx)x` `rArr (du)/(dx) = u[x*(1)/(x) + "log"x*1] = x^(x)(1+"log"x)` `"and "v=2^("sin"x)` `rArr (dv)/(dx) = (d)/(dx)2^("sin"x)` `=2^("sin"x) " log" 2 * (d)/(dx) sinx` `=2^("sin"x) * "log"2 * "cos"x` Now from equation (1) `(dy)/(dx) = x^(x) (1+ "log"x)- 2^("sin"x) * "log"2 * "cos"x` |
|