InterviewSolution
| 1. |
Find the equation of common tangent to the parabolas y2 = 4x and x2 = 32y. |
|
Answer» Given equation of the parabola is y2 = 4x Comparing this equation with y2 = 4ax, we get ⇒ 4a = 4 ⇒ a = 1 Let the equation of common tangent be y = mx + 1/m …..(i) Substituting y = mx + 1/m in x2 = 32y, we get ⇒ x2 = 32(mx + 1/m) = 32 mx + 32/m ⇒ mx2 = 32 m2 x + 32 ⇒ mx2 – 32 m2 x – 32 = 0 ……..(ii) Line (i) touches the parabola x2 = 32y. The quadratic equation (ii) in x has equal roots. Discriminant = 0 ⇒ (-32m2)2 – 4(m)(-32) = 0 ⇒ 1024 m4 + 128m = 0 ⇒ 128m (8m3 + 1) = 0 ⇒ 8m3 + 1 = 0 …..[∵ m ≠ 0] ⇒ m3 = - 1/8 ⇒ m = - 1/2 Substituting m = - 1/2 in (i), we get ⇒ y = - 1/2 x + 1/ (- 1/2) ⇒ y = - 1/2 x-2 ⇒ x + 2y + 4 = 0, which is the equation of the common tangent. |
|