1.

Find the equation of common tangent to the parabolas y2 = 4x and x2 = 32y.

Answer»

Given equation of the parabola is y2 = 4x 

Comparing this equation with y2 = 4ax, we get 

⇒ 4a = 4 

⇒ a = 1 

Let the equation of common tangent be 

y = mx + 1/m …..(i)

Substituting y = mx + 1/m in x2 = 32y, we get

⇒ x2 = 32(mx + 1/m) = 32 mx + 32/m

⇒ mx2 = 32 m2 x + 32 

⇒ mx2 – 32 m2 x – 32 = 0 ……..(ii)

Line (i) touches the parabola x2 = 32y. 

The quadratic equation (ii) in x has equal roots. 

Discriminant = 0 

⇒ (-32m2)2 – 4(m)(-32) = 0 

⇒ 1024 m4 + 128m = 0 

⇒ 128m (8m3 + 1) = 0 

⇒ 8m3 + 1 = 0 …..[∵ m ≠ 0] 

⇒ m3 = - 1/8

⇒ m = - 1/2

Substituting m = - 1/2  in (i), we get

⇒ y = - 1/2 x + 1/ (- 1/2)

⇒ y = - 1/2 x-2

⇒ x + 2y + 4 = 0, which is the equation of the common tangent.



Discussion

No Comment Found