Saved Bookmarks
| 1. |
Find the HCF of 92690, 7378,7161 use its Euclid division algorithm |
| Answer» We have to find the HCF, by Euclid\'s division algorithm of the numbers 92690, 7378 and 7161.Here, we will apply Euclid\'s Division Lemma, we have92690 = 7378 ×\xa0{tex}{/tex}12 + 4154Again we apply Euclid\'s Division Lemma of divisor 7,378 and remainder 4154, thus we have7378 = 4154 ×\xa0{tex}{/tex}1 + 3,2244154 = 3224 ×\xa0{tex}{/tex}1 + 9303224 = 930 × 3\xa0{tex}{/tex}\xa0+ 434930 = 434 × 2\xa0{tex}{/tex}+ 62434 = 62 × {tex}{/tex}7 + 0HCF of 92690 and 7378= 62Now, using Euclid\'s Division Lemma on 7161 and 62, we have7161 = 62 ×\xa0{tex}{/tex}115 + 31Again, applying Euclid\'s Division Lemma on divisor 62 and remainder 31, we have62 = 31 ×\xa0{tex}{/tex}2 + 0Clearly, HCF of 7161 and 62 = 31Hence, HCF of 92690, 7378 and 7161 is 31. | |