1.

Find the HCF of 92690, 7378,7161 use its Euclid division algorithm

Answer» We have to find the HCF, by Euclid\'s division algorithm of the numbers 92690, 7378 and 7161.Here, we will apply Euclid\'s Division Lemma, we have92690 = 7378 ×\xa0{tex}{/tex}12 + 4154Again we apply Euclid\'s Division Lemma of divisor 7,378 and remainder 4154, thus we have7378 = 4154 ×\xa0{tex}{/tex}1 + 3,2244154 = 3224 ×\xa0{tex}{/tex}1 + 9303224 = 930 × 3\xa0{tex}{/tex}\xa0+ 434930 = 434 × 2\xa0{tex}{/tex}+ 62434 = 62 × {tex}{/tex}7 + 0HCF of 92690 and 7378= 62Now, using Euclid\'s Division Lemma on 7161 and 62, we have7161 = 62 ×\xa0{tex}{/tex}115 + 31Again, applying Euclid\'s Division Lemma on divisor 62 and remainder 31, we have62 = 31 ×\xa0{tex}{/tex}2 + 0Clearly, HCF of 7161 and 62 = 31Hence, HCF of 92690, 7378 and 7161 is 31.


Discussion

No Comment Found