InterviewSolution
| 1. |
Find the inradius (approximate value) of the triangle having sides 12 cm, 16 cm and 22 cm.1. 3.7 cm2. 6.7 cm3.1.5 cm4. 7.3 cm |
|
Answer» Correct Answer - Option 1 : 3.7 cm Given: Sides of triangles are 12 cm, 16 cm, and 22 cm Formula used: Area of triangle = \(\sqrt {s\left( {s\; - \;a} \right)\left( {s\; - \;b} \right)\left( {s\; - \;c} \right)} \) Here, s is semi perimeter, and a, b, and c are sides of the triangle Inradius = Area/s Calculation: Let a be 12 cm, b be 16 cm, and c be 22 cm Semi perimeter (s) = (12 + 16 + 22)/2 ⇒ s = 50/2 = 25 Area of triangle = \(\sqrt {s\left( {s\; - \;a} \right)\left( {s\; - \;b} \right)\left( {s\; - \;c} \right)} \) ⇒ Area of triangle = \(\sqrt {25\left( {25\; - \;12} \right)\left( {25\; - \;16} \right)\left( {25\; - \;22} \right)} \) ⇒ Area of triangle = \(\sqrt {25 \times 13 \times 9 \times 3} \) ⇒ Area of triangle = √8775 cm2 ⇒ Area of triangle ≈ 93.67 Inradius = Area/s ⇒ Inradius = 93.67/25 ∴ Inradius is 3.7 cm approximately |
|