

InterviewSolution
Saved Bookmarks
1. |
Find the inverse the matrix (if it exists)given in`[0 0 0 0cosalphasinalpha0sinalpha-cosalpha]` |
Answer» `"Let A="|{:(1,0,0),(0,"cos"alpha,"sin"alpha),(0,"sin"alpha,"-cos"alpha):}|` `rArr" |A| ="|{:(1,0,0),(0,"cos"alpha,"sin"alpha),(0,"sin"alpha,"-cos"alpha):}|` `=1(cos^(2)alpha-sin^(2)alpha)-0=-1ne0` `A_(11)=(-1)^(2)(-cos^(2)alpha-sin^(2)alpha)=-1` `A_(12)=(-1)^(3) (0-0)=0` `A_(13)=9-1)^(4)(0-0)=0` `A_(21)=(-1)^(3)(0-0)=0` `A_(22)=(-1)^(4)(-cos alpha - 0)=-cos alpha` `A_(23)(-1)^(5)(sin alpha-0)=0` `A_(31)=(-1)^(4)(0-0)=0` `A_(32)=(-1)^(5)(sin alpha -0) = - sin alpha`, `A_(33)=(-1)^(6)(cos alpha -0) = cos alpha` `|{:(1,0,0),(0,"-cos"alpha,"-sin"alpha),(0,"-sin"alpha,"cos"alpha):}|=|{:(-1,0,0),(0,"-cos"alpha,"-sin"alpha),(0,"-sin"alpha,"cos"alpha):}|` `"Now A"^(-1)=1/|A|"adj A"=1/-1|{:(-1,0,0),(0,"-cos"alpha,"-sin"alpha),(0,"-sin"alpha,"cos"alpha):}|` `=|{:(1,0,0),(0,"cos"alpha,"sin"alpha),(0,"sin"alpha,"-cos"alpha):}|` |
|