InterviewSolution
| 1. |
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form : 1 + i |
|
Answer» Given complex number is Z=1+i We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ) Where, |Z|=modulus of complex number= \(\sqrt{x^2+y^2}\) θ =arg(z)=argument of complex number= tan-1 \(\Big(\frac{|y|}{|x|}\Big)\) Now for the given problem, ⇒ |z| = \(\sqrt{(1)^2+(1)^2}\) ⇒ |z| = \(\sqrt{1+1}\) ⇒ |z| = \(\sqrt{2}\) ⇒ θ = tan-1\(\Big(\frac{1}{1}\Big)\) Since x>0,y>0 complex number lies in 1st quadrant and the value of θ will be as follows 0°≤θ≤90°. ⇒ θ = tan-1(1) ⇒ θ = \(\frac{\pi}{4}\) ⇒ z = \(\sqrt{2}\Big(cos\Big(\frac{\pi}{4}\Big) + isin\Big(\frac{\pi}{4}\Big)\Big)\) ∴ The Polar form of Z=1+i is z =\(\sqrt{2}\Big(cos\Big(\frac{\pi}{4}\Big) + isin\Big(\frac{\pi}{4}\Big)\Big)\) |
|