1.

Find the principal argument of (1+i\(\sqrt{3}\))2

Answer»

As we know that, z = a+ib

z = (1+i\(\sqrt{3}\))2

= 12 + \((\sqrt{3i})^2\) + 2 x 1 x \(\sqrt{3i}\) 

= 1+i2+2i√3 

= 1-3+2i√3 

= -2+2i√3 

a = -2 b = 2√3

tanα = \(|\frac{b}{a}|\) 

\(|\frac{2\sqrt{3}}{-2}|\)

= |√3|

= α = \(\frac{\pi}{3}\)  or 60°

α<0,b>1 

∴z lies in second quadrant 

arg(z) = θ

=π - a

= π = - \(\frac{π}{3}\)

= \(\frac{2π}{3}\)



Discussion

No Comment Found