InterviewSolution
Saved Bookmarks
| 1. |
Find the principal argument of (1+i\(\sqrt{3}\))2 |
|
Answer» As we know that, z = a+ib z = (1+i\(\sqrt{3}\))2 = 12 + \((\sqrt{3i})^2\) + 2 x 1 x \(\sqrt{3i}\) = 1+i2+2i√3 = 1-3+2i√3 = -2+2i√3 a = -2 b = 2√3 tanα = \(|\frac{b}{a}|\) = \(|\frac{2\sqrt{3}}{-2}|\) = |√3| = α = \(\frac{\pi}{3}\) or 60° α<0,b>1 ∴z lies in second quadrant arg(z) = θ =π - a = π = - \(\frac{π}{3}\) = \(\frac{2π}{3}\) |
|