InterviewSolution
Saved Bookmarks
| 1. |
Find the rational number whose decimal form is `0.bar(142)`. |
|
Answer» We have `0.bar(142).0.142424242...` `=0.1+0.042+0.00042+0.0000042+...oo` `=1/10+{42/10^(3)+42/10^(5)+42/10^(7)+...oo}` `=1/10+((42/10^(3)))/((1-1/10^(2)))[("this being a GS in which "),(a=42/10^(3) and r=(42/10^(5)xx10^(3)/42)=1/10^(2) lt 1)]` `=1/10+(42/1000xx100/99)=(1/10+42/990)=141/990` Hence, `0.bar(142)=141/990`. |
|