InterviewSolution
Saved Bookmarks
| 1. |
Find the real values of x and y for which:(1 + i) y2 + (6 + i) = (2 + i)x |
|
Answer» Given: (1 + i) y2 + (6 + i) = (2 + i)x Consider, (1 + i) y2 + (6 + i) = (2 + i)x ⇒ y2 + iy2 + 6 + i = 2x + ix ⇒ (y2 + 6) + i(y2 + 1) = 2x + ix Comparing the real parts, we get y2 + 6 = 2x ⇒ 2x – y2 – 6 = 0 …(i) Comparing the imaginary parts, we get y2 + 1 = x ⇒ x – y2 – 1 = 0 …(ii) Subtracting the eq. (ii) from (i), we get 2x – y2 – 6 – (x – y2 – 1) = 0 ⇒ 2x – y2 – 6 – x + y2 + 1 = 0 ⇒ x – 5 = 0 ⇒ x = 5 Putting the value of x = 5 in eq. (i), we get 2(5) – y2 – 6 = 0 ⇒ 10 – y2 – 6 = 0 ⇒ -y2 + 4 = 0 ⇒ - y2 = -4 ⇒ y2 = 4 ⇒ y = √4 ⇒ y = ± 2 Hence, the value of x = 5 and y = ± 2 |
|