InterviewSolution
Saved Bookmarks
| 1. |
Find the smallest integral value of x satisfying `(x-2)^(x^(2)-6x+8) gt 1`. |
|
Answer» Clearly , ` x gt 2` …(i) `(x-2)^(x^(2)-6x+8) gt 1` ` rArr (x-2)^(x^(2)-6x+8) gt (x-2)^(0)` When ` x - 2 gt 1` ` or x gt 3`…(ii) We have ` x^(2) - 6x+8 gt 0 ` ` rArr (x-2)(x-4) gt 0 ` ` rArr x lt 2 or x gt 4 ` ....(iii) From (ii) and (iii) ,` x gt 4` When ` x - 2 lt 1` ` or x lt 3 ` ....(iv) We have ` x^(2) - 6x + 8 lt 0 ` ` :. (x-2)(x-4) lt 0` ` :. 2 lt x lt 4` ...(v) From (i), (iv) and (v), we have ` 2 lt x lt 3` Thus, `x in (2, 3) cup (4, infty)`. |
|