Saved Bookmarks
| 1. |
Find the sum of the first 25 terms of an AP whose nth term is given by an=7-3n |
| Answer» Given, an\xa0= 7 - 3nPut\xa0n = 1, a1\xa0= 7\xa0- 3\xa0{tex}\\times{/tex}\xa01 = 7\xa0- 3 = 4Put\xa0n = 2, a2\xa0= 7\xa0- 3\xa0{tex}\\times{/tex}\xa02 = 7\xa0- 6 = 1Common difference(d) = 1 - 4\xa0=\xa0-3Sn\xa0=\xa0{tex}\\frac { n } { 2 } [ 2 a + ( n - 1 ) d ]{/tex}S25\xa0=\xa0{tex} \\frac { 25 } { 2 } [ 2 \\times 4 + ( 25 - 1 ) ( - 3 ) ]{/tex}{tex}= \\frac { 25 } { 2 } [ 8 - 72 ]{/tex}{tex}= \\frac { 25 } { 2 } \\times - 64{/tex}= -800 | |