1.

Find the sum of the first 25terms of an ap whose nth term is given by tn =7-3n

Answer» Given, {tex}n^{th}{/tex}\xa0term of an AP,\xa0{tex}{a_n} = 7-3n{/tex}{tex}\\therefore a= 7-3(1)=4{/tex}{tex}a_{25}=7-3(25)=-68{/tex}Sum of\xa0{tex}n{/tex}\xa0terms of an AP,{tex}S_n=\\frac{n}{2}(a+l){/tex}, where\xa0{tex}a {/tex}\xa0is the first term and\xa0{tex}l{/tex}\xa0is the last term ,here\xa0{tex}l=a_{25}{/tex}Clearly, sum of the first 25 terms, (S25){tex} = \\frac{{25}}{2}(a + {a_{25}}) {/tex}{tex}= \\frac{{25}}{2}[4 + (-68)]{/tex}{tex}= \\frac{25}{2}(-64){/tex}{tex}=25\\times(-32){/tex}{tex} = -800{/tex}


Discussion

No Comment Found