InterviewSolution
Saved Bookmarks
| 1. |
Find the value of a for which the function `f`defined by`f(x)={asinpi/2(x+1),xlt=0(tanx-sinx)/(x^3),x >0"` is continous at x=0 |
|
Answer» `lim_(x->0^-)f(X)=lim_(x->o^+)f(x)=f(0)` LHL=RHL `=lim_(x->0^-)=lim_(x->0^+)f(x)` `=lim_(x->o^-)(asin(pi/2(x+pi)))=lim_(x->0^+)(tanx-sinx)/x^3` `a=lim_(x->o^+)(sec^2-cos)/(3x^2)` `=lim_(x->o^+)(2sec^2*secxtanx+sinx)/(6x)` `=lim_(x->0^+)sec^2x/3*tanx/x+lim_(x->0^+)1/6*sinx/x` `=1/3+1/6` `a=1/2`. |
|