1.

Find the value of a for which the function `f`defined by`f(x)={asinpi/2(x+1),xlt=0(tanx-sinx)/(x^3),x >0"` is continous at x=0

Answer» `lim_(x->0^-)f(X)=lim_(x->o^+)f(x)=f(0)`
LHL=RHL
`=lim_(x->0^-)=lim_(x->0^+)f(x)`
`=lim_(x->o^-)(asin(pi/2(x+pi)))=lim_(x->0^+)(tanx-sinx)/x^3`
`a=lim_(x->o^+)(sec^2-cos)/(3x^2)`
`=lim_(x->o^+)(2sec^2*secxtanx+sinx)/(6x)`
`=lim_(x->0^+)sec^2x/3*tanx/x+lim_(x->0^+)1/6*sinx/x`
`=1/3+1/6`
`a=1/2`.


Discussion

No Comment Found

Related InterviewSolutions