1.

Find the value of k if the points (8, 1), (k, -4), (2, -5) are collinear.

Answer» Area of triangle=1÷2[x1(y2-y3)+x2(y3-y1)+x3(y1-y2)]0=1/2[8(-4-(-5))+k(-5-1)+2(1-(-4))]0=1/2[8(1)+k(-6)+2(5)]0=1/2[8-6k+10]0=1/2[-6k+18]0=1/2×2[-k+3]0=-k+3-3=-k3=k


Discussion

No Comment Found