InterviewSolution
| 1. |
Find the value of \(\sqrt {30 + \sqrt {30 + \sqrt {30 + \sqrt {30 + ...\,\,...\,\,...\,\,...\,\,...\,\,.\,\infty } } } } \)1. 32. 53. 64. 4 |
|
Answer» Correct Answer - Option 3 : 6 Given: \(\sqrt {30 + \sqrt {30 + \sqrt {30 + \sqrt {30 + ...\,\,...\,\,...\,\,...\,\,...\,\,.\,\infty } } } } \) Calculation: Let 'a' be the value of \(\sqrt {30 + \sqrt {30 + \sqrt {30 + \sqrt {30 + ...\,\,...\,\,...\,\,...\,\,...\,\,.\,\infty } } } } \) ⇒ a = \(\sqrt {30 + \sqrt {30 + \sqrt {30 + \sqrt {30 + ...\,\,...\,\,...\,\,...\,\,...\,\,.\,\infty } } } } \) Squaring both sides, we get ⇒ a2 = 30 + \(\sqrt {30 + \sqrt {30 + \sqrt {30 + \sqrt {30 + ...\,\,...\,\,...\,\,...\,\,...\,\,.\,\infty } } } } \) ⇒ a2 = 30 + a ⇒ a2 - a - 30 = 0 ⇒ a2 - 6a + 5a - 30 = 0 ⇒ (a - 6)(a + 5) = 0 ⇒ a = 6, -5 a = - 5 is not possible ∴ The value of \(\sqrt {30 + \sqrt {30 + \sqrt {30 + \sqrt {30 + ...\,\,...\,\,...\,\,...\,\,...\,\,.\,\infty } } } } \) is 6. |
|