

InterviewSolution
Saved Bookmarks
1. |
Find the values of a and b such that the function defined by `f(x)={{:(5, if xle2), (a x+b , if 2 lt x lt10 ),(21 , ifx ge10):}` is a continuous function. |
Answer» Here, value of `f(x)` is changing at `x = 2` and `x = 10`. So, `f(x)` to be continuous, `f(2^-) = f(2^+)` `=>5 = a(2)+b` `=>2a+b = 5->(1)` Also, `f(x)` to be continuous, `f((10^-) = f(10^+)` `=>a(10) + b = 21` `=>10a+b = 21->(2)` Subtracting (2) -(1), `=>10a+b-2a-b = 21-5` `=>8a = 16` `=> a= 2` `:. 2(2)+b = 5` `=>b = 1` `:.` For, `a = 2, b =1, f(x)` will be continuous. |
|