InterviewSolution
Saved Bookmarks
| 1. |
Find the zeroes of the following polynomial-5√5x^+30x+8√5 |
| Answer» The given quadratic polynomial is\xa0{tex}5 \\sqrt{5} x^{2}+30 x+8 \\sqrt{5}.{/tex}In order to factorize it, we have to find two numbers / and m such thatl + m = 30 and lm\xa0{tex}=5 \\sqrt{5} \\times 8 \\sqrt{5}=200{/tex}Clearly, 10 + 20 = 30 and 10\xa0{tex}\\times{/tex}20=200. Therefore, l = 10 and m = 20Now,\xa0{tex}5 \\sqrt{5} x^{2}+30 x+8 \\sqrt{5}{/tex}{tex}=5 \\sqrt{5} x^{2}+10 x+20 x+8 \\sqrt{5}{/tex}{tex}=\\left(5 \\sqrt{5} x^{2}+10 x\\right)+(20 x+8 \\sqrt{5}){/tex}{tex}=\\left(5 \\sqrt{5} x^{2}+10 x\\right)+(4 \\sqrt{5} \\times \\sqrt{5} x+8 \\sqrt{5}){/tex}{tex}=5 x(\\sqrt{5} x+2)+4 \\sqrt{5}(\\sqrt{5} x+2){/tex}{tex}=(5 x+4 \\sqrt{5})(\\sqrt{5} x+2){/tex}{tex}=\\sqrt{5}(\\sqrt{5} x+4)(\\sqrt{5} x+2){/tex} | |