1.

Find two consecutive multiple of 3 whose product is 483

Answer» Let the consecutive positive odd integers be x and (x + 2).According to question,{tex}x(x+2)=483{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}x^2+2x-483=0{/tex}Factorise the equation{tex}\\Rightarrow{/tex}\xa0x2\xa0+ 23x - 21x - 483 = 0{tex}\\Rightarrow{/tex}\xa0x(x + 23) - 21(x + 23) = 0{tex}\\Rightarrow{/tex}\xa0x + 23 = 0 or x - 21 = 0{tex}\\Rightarrow{/tex}\xa0x = -23 or x = 21As, x is a positive integer, {tex}{/tex}{tex}\\Rightarrow{/tex}\xa0x = 21{tex}\\Rightarrow{/tex}\xa0x + 2 = 21 + 2 = 23Therefore, the consecutive positive odd integer are 21 and 23.


Discussion

No Comment Found