Saved Bookmarks
| 1. |
From a solid cylinder whose height is 2.4cm and diameter 1.4 |
| Answer» Diameter of the solid cylinder = 1.4 cm{tex}\\therefore{/tex}\xa0Radius of the solid cylinder = 0.7 cm{tex}\\therefore{/tex}\xa0Radius of the base of the conical cavity = 0.7 cmHeight of the solid cylinder = 2.4 cm{tex}\\therefore{/tex}\xa0Height of the conical cavity = 2.4 cm{tex}\\therefore{/tex}\xa0Slant height of the conical cavity = {tex}\\sqrt{(0.7)^2\\;+\\;(2.4)^2\\;}\\;=\\sqrt{0.49\\;+5.76}=\\;\\sqrt{6.25}\\;=\\;2.5{/tex} cm{tex}\\therefore{/tex}\xa0TSA of remaining solid= 2{tex}\\pi{/tex}(0.7) (2.4) +\xa0{tex}\\pi{/tex}(0.7)2 +\xa0{tex}\\pi{/tex}(0.7) (2.5)= 3.36{tex}\\pi{/tex}\xa0+ 0.49{tex}\\pi{/tex}\xa0+ 1.75{tex}\\pi{/tex}= 5.6{tex}\\pi{/tex}= 5.6 {tex}\\times{/tex}\xa0{tex}\\frac{22}7{/tex}= 17.6 cm 2\xa0= 18 cm 2 (to the nearest cm 2) | |