Saved Bookmarks
| 1. |
Give example of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm |
| Answer» \tdeg p(x) = deg q(x)\t{tex}p ( x ) = 2 x ^ { 2 } - 2 x + 14{/tex}\tg(x) = 2\tq(x) = x2 - x + 7\tr(x) = 0\tClearly, p(x) = q(x) {tex} \\times {/tex}\xa0g(x) + r(x)\tdeg q(x) = deg r(x)\t{tex}p ( x ) = x ^ { 3 } + x ^ { 2 } + x + 1{/tex}\t{tex}g ( x ) = x ^ { 2 } - 1{/tex}\tq(x) = x + 1\tr(x) = 2x + 2\tClearly,\xa0{tex}p ( x ) = q ( x ) \\times g ( x ) + r ( x ){/tex}\tdeg r(x) = 0\t{tex}p ( x ) = x ^ { 3 } + 2 x ^ { 2 } - x - 2{/tex}\t{tex}g ( x ) = x ^ { 2 } - 1{/tex}\tq(x) = x + 2\tr(x) = 4\tClearly,\xa0{tex}p ( x ) = q ( x ) \\times g ( x ) + r ( x ){/tex} | |