InterviewSolution
| 1. |
Given a boolean function f (x1, x2, …, xn), which of the following equations is NOT true(A) f (x1, x2, …, xn) = x1’f(x1, x2, …, xn) + x1f(x1, x2, …, xn)(B) f (x1, x2, …, xn) = x2f(x1, x2, …, xn) + x2’f(x1, x2, …,xn)(C) f (x1, x2, …, xn) = xn’f(x1, x2, …, 0) + xnf(x1, x2, …,1)(D) f (x1, x2, …, xn) = f(0, x2, …, xn) + f(1, x2, .., xn) |
|
Answer» Answer: (D) Explanation: Option A: f (x1, x2, …, xn) = x1’f(x1, x2, …, xn) + x1f(x1, x2, …, xn) Case 1: taking x1=0 RHS = 1.f(x1, x2, …, xn) + 0.f(x1, x2, …, xn) RHS =f(x1, x2, …, xn). Case 2: taking x1=1 Option B: f (x1, x2, …, xn) = x2f(x1, x2, …, xn) + x2’f(x1, x2, …, xn) Case 2: taking x2=1 In both cases RHS=LHS, so, (B) is true. Option C: f (x1, x2, …, xn) = xn’f(x1, x2, …, 0) + xnf(x1, x2, …,1) Case 2: taking xn=1 Option D: f (x1, x2, …, xn) = f(0, x2, …, xn) + f(1, x2, .., xn) |
|