1.

Given sin(A+B)=SinA cosB +cosA sinB then find the value of sin 75°

Answer» Let A=45°,B=30°(so that sum of A and B =75° and we can get Sin74°)(put the value of A and B in equation) - Sin75°=Sin45°*Cos30° + Cos 45°*Sin30°- Sin75° = 1/√2*√3/2 + 1/√2*1/2- Sin75° = √3/2√2 + 1/2√2- Sin75° = (√3+1)/2√2Sin75° = (√6+√2)/4
sin ( A+ B) = sin75°Let A = 45° and B = 30°Thensin75° = sin45° cos30° + cos45° sin30°= 1/√2 * √3/2 + 1/√2 * 1/2= √3 / 2√2 + 1/2√2= √3 + 1/2√2You can rationalise the denominator.


Discussion

No Comment Found