1.

हल कीजिए - `tan^(2) theta + sec 2 theta = 1`

Answer» दिया है - `tan^(2) theta + sec 2 theta = 1`
`rArr tan^(2) theta + 1/(cos 2 theta) = 1`
`rArr tan^(2) theta + (1 +tan^(2) theta)/(1 - tan^(2) theta) = 1`
`rArr tan^(2) theta - tan^(4) theta +1 + tan^(2) theta =1 - tan^(2) theta`
`rArr tan^(4) theta - 3 tan^(2) theta = 0`
`rArr tan^(2) theta(tan^(2) theta-3) = 0`
यदि `tan^(2) theta = 0" तब " tan theta = 0 rArr theta = n pi`
यदि `tan^(2) theta - 3 = 0" तब " tan theta= sqrt3`
`:. theta = n pi + pi/3, n in Z`


Discussion

No Comment Found