1.

How many terms of the series 54,51,48...be taken so that their sum is513?explain the double answer

Answer» Given series is 54, 51, 48,...Here, a = 54, d = 51 - 54 = - 3Let number of terms be n, then their sumSn\xa0= 513{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { n } { 2 }{/tex}\xa0[2a + (n - 1) d] = 513{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { n } { 2 }{/tex}\xa0[2\xa0{tex}\\times{/tex}\xa054 + (n - 1) (- 3)] = 513{tex}\\Rightarrow{/tex}\xa0n (108 - 3n + 3) = 513\xa0{tex}\\times{/tex}\xa02{tex}\\Rightarrow{/tex}\xa0- 3n2\xa0+ 111n = 1026{tex}\\Rightarrow{/tex}\xa0- (3n2\xa0- 111n + 1026) = 0{tex}\\Rightarrow{/tex}\xa0n2\xa0- 37n + 342 = 0{tex}\\Rightarrow{/tex}\xa0(n - 18) (n - 18) = 0\xa0{tex}\\Rightarrow{/tex}\xa0n = 18 or 19Here, the common difference is negative and 19th\xa0term= 54 + (19 - 1)\xa0{tex}\\times{/tex}\xa0(- 3) = 0So, the sum of 18 terms as well as that of 19 terms is 513.


Discussion

No Comment Found