InterviewSolution
| 1. |
If 3√3x3 + 2√2y3 – 8z3 + 6√6xyz = (Ax + By – Cz)(3x2 + 2y2 + 4z2 – √2Axy + 2Byz + 2√3Zx), find the value of A2 + B2 – C2?1. 42. 13. 94. 5 |
|
Answer» Correct Answer - Option 2 : 1 Given: 3√3x3 + 2√2y3 – 8z3 + 6√6xyz = (Ax + By – Cz)(3x2 + 2y2 + 4z2 – √2Axy + 2Byz + 2√3Zx) Concept: Compare the unknown values of the given equation with the actual values of the equation after expansion. Formula used: a3 + b3 + c3 – 3abc = (a + b + c)[a2 + b2 + c2 – (ab + bc + ca)] Calculation: ∵ 3√3x3 + 2√2y3 – 8z3 + 6√6xyz = (√3x)3 + (√2y)3 + (–2z)3 – 3(√3x)(√2y)( –2z) ∴ (√3x)3 + (√2y)3 + (-2z)3 – 3(√3x)(√2y)(-2z) = (√3x + √2y – 2z)[3x2 + 2y2 + 4z2 – (√3x)(√2y) – (√2y)( –2z) – (√3x)(–2z)] ⇒ (√3x)3 + (√2y)3 + (-2z)3 – 3(√3x)(√2y)(-2z) = (√3x + √2y – 2z)[3x2 + 2y2 + 4z2 – (√3x)(√2y) + (√2y)(2z) + (√3x)(2z)] ∴ If we compare the values of the equations; We get A = √3 B = √2 C = 2 ∴ A2 + B2 – C2 = (√3)2 + (√2)2 – (2)2 = 3 + 2 – 4 = 5 – 4 = 1 |
|