1.

If 5cos theta=7sin theta find 7sin theta+ 5cos theta÷ 5sin theta + 7 cos theta

Answer» {tex}\\begin{array}{l}\\frac{7\\sin\\;\\theta+\\;5\\cos\\theta}{\\;5\\sin\\theta\\;+\\;7\\;\\cos\\;\\theta}=\\frac{7\\sin\\;\\theta+7\\sin\\;\\theta}{7\\sin\\;\\theta+{\\displaystyle\\frac{\\;7\\times5}5}\\cos\\theta}\\\\=\\frac{\\displaystyle14\\sin\\;\\theta}{7\\sin\\;\\theta+{\\displaystyle\\frac75}\\times7\\sin\\;\\theta}=\\frac{70\\sin\\;\\theta}{7\\sin\\;\\theta+49\\sin\\;\\theta}\\\\=\\frac{\\displaystyle70\\sin\\;\\theta}{\\displaystyle56\\sin\\;\\theta}=\\frac{70}{56}=\\frac54\\end{array}{/tex}


Discussion

No Comment Found