Saved Bookmarks
| 1. |
If 9th term of an A.P is zero prove that it\'s 29th term is double the 19th term |
| Answer» We have,a9\xa0= 0{tex}\\Rightarrow{/tex}\xa0a + (9 - 1)d = 0{tex}\\Rightarrow{/tex}\xa0a + 8d = 0{tex}\\Rightarrow{/tex}\xa0a = -8dTo prove: a29 = 2a19Proof:LHS = a29= a + (29 - 1)d= a + 28d= -8d + 28d= 20dRHS = 2a19= 2 a + (19 - 1)d]= 2[ -8d + 18d]= 2\xa0{tex}\\times{/tex}10d= 20d{tex}\\therefore{/tex} LHS = RHSHence, 29th\xa0term is double the 19th term. | |