InterviewSolution
Saved Bookmarks
| 1. |
If \(a^2 + b^2 + c^2+ 216 = 12(a+b-2c)\), then \(\sqrt{ab-bc+ca}\) is:1. 62. 43. 84. 3 |
|
Answer» Correct Answer - Option 1 : 6 Given: a2 + b2 + c2 + 216 = 12(a + b – 2c) Identity used: (a + b)2 = a2 + b2 + 2ab (a – b)2 = a2 + b2 – 2ab Calculation: a2 + b2 + c2 + 216 = 12(a + b – 2c) ⇒ a2 – 12a + b2 – 12b + c2 + 24c + 216 = 0 ⇒ a2 – 12a + 36 + b2 – 12b + 36 + c2 + 24c + 144 = 0 ⇒ (a – 6)2 + (b – 6)2 + (c + 12)2 = 0 ⇒ a = 6, b = 6, c = –12 \(\sqrt{ab-bc+ca}\) ⇒ \(\sqrt{6\times 6-(6 \times (-12)+(-12 \times 6)}\) ⇒ √36 ⇒ 6 ∴ \(\sqrt{ab-bc+ca}\) is 6 |
|