1.

If `A` and `B` are invertible matrices then which of the following is not correct?A. `adjA=|A|.A^(-1)`B. `det(A)^(-1)=["det"(A)]^(-1)`C. `(AB)^(-1)=B^(-1)A^(-1)`D. `(A+B)^(-1)=B^(-1)+A^(-1)`

Answer» Correct Answer - D
Since A and B are invertible matrices So we can say that
`(AB)^(-1)=B^(-1)A^(-1)`…………..i
Also `A^(-1)=1/(|A|)(adjA)`
`implies adjA=|A|.A^(-1)`………….ii
Also `det(A)^(-1)=[det(A)]^(-1)`
`implies det(A)^(-1)=1/([det(A)])`
`implies det(A).det(A)^(-1)=1`...............iii
which is true
Again `(A+B)^(-1)=1/(|(A+B)|)(adj(A+B)`
`implies (A+B)^(-1)!=B^(-1)+A^(-1)`..........iv
So only option (d) is incorrect


Discussion

No Comment Found